
NASA-CR-203435
RNR-88-013

IMPLEMENTATION AND ANALYSIS OF A NAVIER-STOKES ALGORITHM

ON PARALLEL COMPUTERS

Raad A. Fatoohi Chester E. Grosch

,7,7IJ - <_/- ,"s"_

" ("c

(3/ .;'< - x/, c.._

Sterling Software, Inc.

Palo Alto, CA 94303

Old Dominion University

Norfolk, VA 23529

Abstract -- This paper presents the results of the

implementation of a Navier-Stokes algorithm on three

parallel/vector computers. The object of this research is to

determine how well, or poorly, a single numerical algo-

rithm would map onto three different architectures. The

algorithm is a compact difference scheme for the solution

of the incompressible, two-dimensional, time dependent

Navier-Stokes equations. The computers were chosen so

as to encompass a variety of architectures. They are: the

MPP, an SIMD machine with 16K bit serial processors;

Flex/32, an MIMD machine with 20 processors; and

Cray/2. The implementation of the algorithm is discussed

in relation to these architectures and measures of the per-

formance on each machine are given. Simple performance

models are used to describe the performance. These

models highlight the bottlenecks and limiting factors for

this algorithm on these architectures. Finally conclusions

are presented.

I. Introduction

Over the past few years a significant number of paral-
lel computers have been built. Some of these have been

one of a kind research engines, others are offered commer-

cially. Both SIMD and MIMD architectures are included.

A major problem now facing the computing community is
to understand how to use these various machines most

effectively. Theoretical studies of this question are valu-

able. However, we believe that comparative studies,

wherein the same algorithm is implemented on a number

of different architectures, provide an equally valid way to

this understanding. These studies, carried out for a wide

variety of algorithms and architectures, can highlight those

features of the architectures and algorithms which make

them suitable for high performance parallel processing.

They can exhibit the detailed features of an architecture

and/or algorithm which can be bottlenecks and which may
be overlooked in theoretical studies. The success of this

approach depends on choosing "significant" algorithms for

implementation and carrying out the implementation over a

wide spectrum of architectures. If the algorithm is trivial

or embarrassingly parallel it will fit any architecture very

well. We need to use algorithms which solve hard prob-

lems which' are attacked in the scientific and engineering

community.

In this paper we present the results of the implementa-

tion of an algorithm for the numerical solution of the

Navier-Stokes equations, a set of nonlinear partial

differential equations. In detail, the algorithm is a compact

difference scheme for the numerical solution of the

incompressible, two dimensional, time dependent Navier-

Stokes equations. The implementation of the algorithm

requires the setting of initial conditions, boundary condi-

tions at each time step, time stepping the field, and check-

ing for convergence at each time step. Equally important

to the choice of algorithm is the choice of parallel comput-

ers. We have chosen to work on a set of m;tchines which

encompass a variety of architectures. They are: the MPP,

an SIMD machine with 16K bit serial processors; Flex/32,

an MIMD machine with 20 processors; and Cray/2. The

basic comparison which we make is among SIMD instruc-

tion parallelism on the MPP, MIMD process parallelism on

the Flex/32, and vectorization of a serial code on the

Cray/2. The implementation is discussed in relation to

these architectures and measures of the performance of the

algorithm on each machine are given. In order to under-

stand the performances on the various machines simple

performance models are developed to describe how this

algorithm, and others, behave on these computers. These

models highlight the bottlenecks and limiting factors for
algorithms of this class on these architectures. In the last

section of this paper we present a number of conclusions.

H. The numerical algorithm

The Navier-Stokes equations for the two-dimensional,

time dependent flow of a viscous incompressible fluid may

be written, in dimensionless variables, as:

3u 0v

+ _ = O, (2.1)

o_u
= _, (2.2)

ax 0y

--+ _x (u _)+ _y (v _) = -LI v2 _'0t Re (2.3)

where i/'= (u,v) is the velocity, _ is the voracity and Re is
the Reynolds number.

The numerical algorithm used to solve equations (2.1)

to (2.3) was first described by Gatski, et at. [6]. This algo-
rithm is based on the compact differencing schemes which

require the use of only the values of the dependent vari-

ables in and on the boundaries of a single computational

cell. Grosch [8] adapted the Navier-Stokes code to ICL-

DAP. Fatoohi and Grosch [3] solved equations (2.1) and

(2.2), the Cauchy-Riemann equations, on parallel comput-

ers. The algorithm is briefly described here.

Consider equations (2.1) to (2.3) in the square domain

0<x<l, 0<y< I with the boundary conditions u= l
and v = 0 at y = 1 and u = v = 0 elsewhere. Subdivide the

domain into rectangular cells. The center of a cell is at

(i+1/2j+1/2). Apply the centered difference operator to

235

equations (2.1) to (2.2), to get

xUi+lt.z,/+t + 8yV/+lt24+wz = O, (2.4)

V+lr2j+lr2 - 8yU/+tn.,/+t,-2 = _i+u2j+la. (2.5)

The adaptation of this algorithm to different parallel
architectures can be simplified by the introduction of box
variables to represent 0'. The box variables, _,, are defined
at the comers of the cells so that the average of two adja-
cent _s is equal to the _ on the included side. The set of

difference equations and boundary conditions in terms of
the box variables are solved using a cell relaxation scheme
which is equivalent to an SOR method [6], [8].

The compact difference approximation to equation
(2.3) results in an implicit set of equations which are
solved by an ADI method [4]. This method consists of
two half steps to advance the solution one full step in time.
Let At be the full time step and apply finite difference
operators to equation (2.3), to get

3(x) r_lt2 20t_)) ;_.lr2,j ,,/-Ij - (1 + + _) r_+:a_i+lj = Fi d, (2.6)

- _i_1 Gid, (2.7)_,',/-I (1 + =

where

Fi, i = -[_,_) ;ind_, - (1 - 2a_)) ;i_ - '_4) ;i_,/+l,

Gij --I_(X_--,J_,-1jrn+lt2(1 - 2a_ x)) -_tr'n+'l/2 -- _ rn+I/2= -- _i+lj ,

ctj(x) = At / 2(Ax)2 Re, a_) = At / 2(Ay) 2 Re,

p(') = aJx) + At Ui_lj /4(tuc)/, p_) = et?) + At Vi_l/4(Ay)i ,_4

_) = _(x) _ At Ui+ld /4(Ax)j, "]_)= Or?) - At Vij+i/4(Ay)i.

The velocityfieldisnot definedatthe comers of theceils

inthisscheme;however,itcan be computed usingthe box
variablesatthetwo immediateinteriorneighborsalongthe

verticaland horizontallines.Equation(2.6)representsa

setof independenttridiagonalsystems(one foreach verti-

cal line of the domain). Similarly,equation (2.7)
representsa setof independenttridiagonalsystems(onefor

each horizontallineofthe domain). The ADI method for

equation (2.3)is appliedto all interiorpointsof the
domain. The valuesof _ on the boundariesarecomputed

usingequation(2.2),see [2]fordetails.

The key totheadaptationoftherelaxationscheme for

solvingequations(2.1)and .(2.2)to parallelcomputersis
the realization that each P' is updated four times in a
sequential sweep over the array of ceils. This fact is util-
ized by using reordering to achieve parallelism. The com-
putational ceils are divided into four sets of disjoint cells
so that the cells of each set can be processed in parallel
[3]. It is therefore clear that the cell iteration for the box
variables is a four "color" scheme. Thus four steps are

necessary for a complete relaxation sweep.

The main issue in implementing the ADI method for
equation (2.3) on parallel computers is choosing an
efficient algorithm for the solution of tridiagonal systems.

Two algorithms are considered here: Gaussian elimination

and cyclic elimination, [4], [9]. The Gaussian elimination
algorithm is based on an LU decomposition of the

tridiagonal matrix. This algorithm is inherently serial
because of the recurrence relations in both stages of the
algorithm. However, if one is faced with solving a set of
independent tridiagonal systems, then Gaussian elimination
will be the best algorithm to use on a parallel computer;, all
systems of the set are solved in parallel. The cyclic elimi-
nation algorithm is a variant of the cyclic reduction algo-
rithm [9] applying the reduction procedure to all of the
equations and eliminating the back substitution phase of
the algorithm. Cyclic elimination is most suitable for
machines with a large natural parallelism, like the MPP.

The solution procedure for the Navier-Stokes equa-
tions can be summerized as follows:

(1) Assume that _ is zero everywhere at t = 0. The vari-
ables and boundary values are initialized.

(2) The vorticity at the comers of the domain, undefined
in this scheme, is approximated using the values of its
neighboring points. The values of _i+1/2,j+1/2are com-
puted using the values of _ at the comers of the cells.

(3) The relaxation process is implemented for each
"color", i.e. four times in order to complete a sweep.
"Foe maximum residual is computed and tested against
the convergence tolerance. The whole process is
repeated until the iteration converges.

(4) The coefficients a(j_), ct_), ,-LCR(x),_,_), _,xe),_,j) for both
passes of the ADI method are computed.

(5) The values of _ on the boundaries are computed.

(6) The tridiagonal equations distributed over columns,
equation (2.6), are solved.

(7) The tridiagonal equations distributed over rows, equa-
tion (2.7), are solved.

These steps were implemented using the following subpro-
grams: setbc, step (1); zcntr, step (2); relaxd, step (3); cof,
step (4); zbc, step (5); triied, step (6); and trijed, step (7).
The repetition of steps (2) through (7) yields the values of
the velocity and vorticity at any later time.

llL Implementation on the MPP

The Massively Parallel Processor (MPP) is a large-
scale SlMD processor built by Goodyear Aerospace Co. for
NASA Goddard Space Flight Center [1]. The MPP is a
back-end processor for a VAX-I1/'780 host, which supports
its program development and I/O needs.

The MPP's high level language is MPP Pascal [7]. It
is a machine-dependent language which has evolved from
Parallel Pascal, an extended version of Pascal with a syntax
for specifying array operations. These extensions provide a
parallel array data type and operations on these arrays.

The Navier-Stokes algorithm, described in section II,
was implemented on the MPP using 127 x 127 ceils
(128 x 128 grid points). The computational ceils are
mapped onto the array so that each comer of a ceil
corresponds to a processor. The seven subprograms of this
algorit.am (see section Ir) were written in MPP Pascal.

236

These subprograms were executed entirely on the MPP;
only//O routines were run on the VAX.

The relaxation process, subprogram relaxd, was

implemented on the array using the four color relaxation

scheme [3]. The ADI method, subprograms triied and

trijed, was implemented by solving two sets of 128 tridiag-

onal systems using the cyclic elimination algorithm. This

is done in parallel on the array with a tridiagona/system of
128 equations being solved on each row or column.

One of the problems in solving Navier-Stokes equa-
tions on the MPP is the size of the PE memory. The

relaxation subprogram uses almost all of the I024 bit PE

memory; 22 parallel arrays of floating point numbers, all

but 5 of which are temporary. Although the staging
memory can be used as a backup memory, this causes an

I/O overhead and reduces the efficiency. This problem was

solved by declaring all parallel arrays as global variables

and using them in procedures for more than one purpose.

Beside this memory problem, there are problems in using
MPP Pascal to perform vector operations and to exwact

elements of parallel arrays. Operations on vectors are per-

formed by expanding them to matrices and performing
matrix operations; thus the processing rate is 1/128 of that

for matrix operations. MPP Pascal does not permit extract-

ing an element of a parallel array. This means that scalar

operations involving elements of parallel arrays need to be

expanded to matrix operations or performed on the VAX.

The relaxation subprogram is quite efficient; almost

all of the operations are matrix operations, no vector and

only two scalar operations per iteration, with data lransfers

only between nearest neighbors. The ADI subprograms are

reasonably efficient; mostly matrix operations with few

scalar and no vector operations. However, both algorithms

have some hidden defects. In updating the box variables

for each set in the relaxation scheme only one forth of the

Processors do useful work; the remaining processors are

masked out. This is because only one corner of each cell

of a set is updated each time. For each level of the elimi-

nation process in the cyclic elimination algorithm, a set of

data is shifted off the array and an equal set of zeros is

shifted onto the array. This means that some of the pro-

cessors are not doing useful work; here they are either

multiplying by zero or adding a zero. This is a problem
with many algorithms on SIMD machines.

Table I contains the execution time for each subpro-
gram of the algorithm, that for one iteration in the case of

relaxd,, the percentage of the total time spent in that sub-

program; and the processing rate. It is clear, from Table I,
that the majority of the time was spent in relaxd for this

particular run. This is because the average time step
requires about 270 iterations and the total time spent in the

other subprograms (zcmr, cof, zbc, triied, trijed) is only
about the time to do two iterations of relaxd. The number

of iterations in relaxd per time step depends on the data

used during a given run. A different input data set could

result in a smaller number of iterations per time step and

relatively less time spent in the relaxation subprogram.

on the MPP

Sub- Execution

setbc 0.587

zcntr 2.694

relaxd 15.265"

col 1.933

zbc 1.833

triied 12.717

__ 1..__2.725

overall_______# 4....._._11.597
i

* per iteration.

Table I. Measured execution time and processing rate of

the Navier-Stokes subprograms for the 128 x 128 problem

Perc. of

time (%)

0.00

0.06

99.23

0.05

0.04

0.31

0.31

100.00

Processing

rate 0vlFLOPS)
84

24

156

136

I.I

125

125
155

for ten time steps (execution, time is in seconds here).

The processing rates in Table I are determined by
counting only the arithmetic operations which truly contri-

bute to the soludon. Scalar and vector operations which

were implemented as matrix operations are counted as

scalar and vector operations. This is the reason why the

subprograms zbc and zcntr have low processing rates; zbc

has only vector operations while zcntr has some scalar

operations implemented as matrix operations. The subpro-

gram setbc has mostly scalar and data assignment opera-

tions which reduce its processing rate. Beside these three

subprograms, the processing rate ranges from 125 to 155

MFLOPS with an average rate of about 140 MFLOPS.

In order to estimate the execution time of an algo-

rithm on the MPP, the numbers of arithmetic and data

transfer operations are counted and the cost of each opera-

tion is measured. This is illustrated in the following
model. Only operations on parallel arrays are considered.

The execution time of an algorithm on the MPP, 7",can be modeled as:

r = To. p + T_, (3.1)

Tc"w = tc (Na Ca + Nm Cm + Nd Ca), (3.2)

Tcmm= to (N_ Csh + Nst Cs,) ' (3.3)

where Tc,,w and T_,, are the computation and communica-

tion times; tc is the machine cycle time (to = 100 nsec); No,

Arm, Nd, Ns_, and N_ are the numbers of additions, multipli-

cations, divisions, shift operations, and steps shifted; and

Ca' Cm, Ca, Csh, and C S are the numbers of cycles for

addition, multiplication, division, startup shift operation,
and each step of shift operation. Table II contains the

measured values of the basic floating point operations.

Table IL Measured execution times (in machine cycles) of
the floating point operations in MPP Pascal.

F / / I shift [shift [

1225/ 16g

237

Table M contains the operation counts per grid point
for the Navier-Stokes subprograms on the MPP using the
cyclic elimination algorithm for solving the tridiagonal sys-
tems. Note that scalar and vector operations (in zcntr and
zbc), which were implemented as matrix operations, are
considered here as matrix operations. Table IV contains
the estimated computation and communication times using
equations (3.2) and (3.3) and Tables 1I and M. The cost of
scalar operations is not included in this model; this
explains the differences between the estimated and meas-
ured times for setbc and cof. Apart from these two subpro-

grams, the difference between the total estimated and
measured times ranges between 3% to 8% of the measured
times. The amount of time spent on data transfers is quite
modest; from 6% for relaxd to 25% for triied and trijed.
This is because this algorithm does not contain many data
transfers and these transfers are only between nearest

neighbors except for the tridiagonal solvers.

Table IlL Operation counts per grid point for the Navier-
Stokes subprograms on the MPP, using the cyclic elimina-
tion algorithm for solving the tridiagonal systems.

Sub- Add

program
setbc 1
zcntr 15

relaxd* 119

cof 8
zbc 5

triied 30

trijed 30

* per iteration.

Multiply

1
9
26
8
7
45
45

Divide Shift

19
- 42
- 8
4 8
22 44
22 44

Steps
shifted

28
84
8
11

764
764

Table IV. Estimated execution times (in milliseconds) of

the Navier-Stokes sub

Sub-

program
setbc
zcntr
relaxd

col
zbc

triied
trijed

_rograms on the MPP.

Comp. Comm.
time time

0.300
2.177 0.348

13.592 0.840
1.421 0.134
1.540 0.144
9.239 3.043
9.239 3.043

Total est.
time

0.300
2.525

14.432
1.555
1.684

12.283
12.283

Measured
time

0.587
2.694

15.265
1.933
1.833

12.717
12.725

IV. Implementation on the Flex/32

The Flex/32 is an MIMD shared memory multiproces-
sor based on 32 bit National Semiconductor 32032

microprocessor and 32081 coprocessor [51. The results
presented here were obtained using the 20 processor
machine at NASA Langley Research Center.

The machine has ten local buses; each connects two

processors. These local buses are connected together and
to the common memory by a common bus. The 2.25

Mbytes of the common memory is accessible to all proces-
sors. Each processor contains 4 Mbytes of local memory.
Each processor has a cycle time of 100 nsec.

The Navier-Stokes algorithm, described in section II,
was implemented on the Flex/32 using 64 x 64 grid points
(63 x 63 cells) and 128 x 128 grid points (127 x 127

ceils). The main program as well as the seven subpro-
grams of the algorithm were written in Concurrent Fortran,
which comprises the standard Fortran 77 language and
extensions that support concurrent processing.

The parallel implementation of the Navier-Stokes
algorithm is done by assigning a strip of the computational
domain to a process and performing all the steps of the
algorithm in each process. The main program performs
only the input and output operations and creates and
spawns the processes on specified processors. In our
implementation, we used 1, 2, 4, 8, and 16 processors of
the machine. The domain is decomposed first vertically for
the first six subprograms (setbc, zcntr, relaxd, cof, zbc,
and triied) and then horizontally for the subprogram trijed.
The relaxation scheme for each strip was implemented
locally. After relaxing each set of cells, each process
exchanges the values of the interface points with its two
neighbors through the common memory. The tridiagonal
equations were solved using the Gaussian elimination algo-
rithm for both passes of the ADI method. Data is stored in
the common memory, in the local memory of each proces-
sor, or in both of them.

In order to satisfy data dependencies between seg-
ments of the code, a counter is used. This counter, which
is a shared variable with a lock assigned to it, can be incre-
mented by any process and be reset by only one process.
It is implemented as a "barrier" where all processes pause
when they reach it. A set of flags are also used for syn-
chronization in the relaxation subprogram.

Table V contains the speedups and efficiencies as
functions of the number of processors for the 64 x 64 and
128 x 128 problems. The measured execution times and
processing rates using 16 processors are listed in Table VI.
The efficiency of the algorithm ranges from about 94%, for
the 64 x 64 problem using 16 processors, to about 99%,
for the 128 x 128 problem using two processors.

Table V. Speedup and efficiency as functions of the
number of processors, p, of the Navier-Stokes algorithm on
the Flex 32.

P

1
2
4
8
16

64 x 64 points
speedup efficiency

1.000 1.000
1.959 0.980
3.893 0.973
7.715 0.964

15.027 0.939

speedup
1.000
1.976
3.941
7.850

15.483

128 x 128 points

efficiency
1.000
0.988
0.985
0.981
0.968

Table VI. Measured execution times for ten time steps and

processing rates for the Navier-Stokes algorithm using 16
processors of the Flex/32.

Problem size

(grid points)
64x64

128 x 128

Execution time

(sec)
268.7

2587.1

Processing rate
(MFLOPS)

1.09

1.13

238

The Performance model is based on estimating the

values of the overheads resulting from running the algo-

rithm on more than one processor. The execution time of

an algorithm on p processors of the Flex/32, Tp, can be
modeled as:

rp = ro,_ + roy,. (4.1)

where To.rap is the computation time and Toy r is the over-

head time. Let f/a be a load distribution factor where

._a = 1 ff the load is distributed evenly between the proces-

sors and fta > 1 ff at least one processor has less work to

do than the other processors. Then the computation time

on p processors can be computed by

Tcr,v, = fta T1 / p, (4.2)

where T 1 is the computation time using a single processor.

The overhead time can be modeled by:

r°_" = T°w + rsp n + To., (4.3)

where To,,o is the common memory overhead time, To,,_ is
the spawning time of p processes, and T_,, is the synchron-

ization time. Three components of the common memory
overhead time can be identified:

Tcm°= T°'_ + ToP1 + Total, (4.4)

where To, _ is the common memory additional time - this

results from storing additional variables in the common

memory; Tcpt is the common plus local memory time - this

results from storing variables in both the common and

local memories; To, _ is the common minus local memory

time - this results from storing variables in the common

memory instead of local memory. The values of To,,,, Try,,
To,_, Tcpl, and To_ can be estimated as follows:

ro,n = P to': (4.5)

T_n = P ktct trot' (4.6)

Tcma = n kcmafbc(P) tona ' (4.7)

Tcpl = n kcpI (fbc(P) tcrna + tima), (4.8)

Tc,,a = n kc,,a (f_(p) tcma - tlma), (4.9)

where tsp,, is the time to spawn one process - a reasonable

value is 13 msec; ttck is the rime to lock and unlock a vari-

able - a reasonable value is 47 [tsec; tcm _ is the time to

access a variable in common memory - a reasonable value

is 6 l.tsec; tl,_a is the time to access a variable in local

memory _ a reasonable value is 5 I.tsec; ktc t is the number

of times a variable is locked and unlocked for each pro-

cess; kc, m is the number of times an additional variable is

referenced; k_pt is the number of times a variable is stored

ua both local and common memory; k_r,a is the number of

times a variable is stored in common memory instead of

local memory; and ft, c(P) is the bus contention factor - it is

a function of p. It is assumed that all memory operations
are Performed on vectors of length n.

The performance of the Navier-Stokes algorithm is

heavily influenced by the performance of the relaxation

239

subprogram; about 98% of the total time was spent in this

subprogram. Since the number of cells is not divisible by

the number of processors used, the last processor has less

work to do than the other processors. Therefore, the load

distribution factor, equation (4.2), can be computed by

Using the performance model, equations (4.1) through
(4.10), the overhead time represents at most 5% of the exe-

cution time of the algorithm, including the load distribution

factor. The overhead time of the relaxation subprogram

dominates the total overhead time. The values of klc t and

kcma for each iteration of the relaxation process are 1 and

8. The spawning time has a minor impact on the overhead

time because the Processes are spawned only once during
the lifetime of the program. The synchronization time is

insignificant because the routines that provide the locking

mechanism are very efficient and overlap with the memory
access. The bus contention factor is very small. The com-

mon memory additional time, Tcma, dominates the overhead

time. This overhead results from accessing the interface

points for each iteration of the relaxation subprogram. The

other components of the common memory overhead time,
To,l and To,a, have a negligible impact on the total over-

head time because these operations are performed only
once during every time step.

V. Implementation on the Cray/2

The Cray/2 is an MIMD supercomputer with four

Central Processing Units, a foreground processor which

controls UO and a main memory. The results reported here

were obtained using the old Cray/2 at NASA Ames

Research Center; the new one has a shorter main memory
access time than the old one.

The Navier-Stokes algorithm, described in section II,

was implemented on one processor of the Cray/2 using
64 x 64 and 128 x 128 grid points. The reordered form of

the relaxation scheme, the four color scheme, was imple-

mented on the Cray/2 with no major modifications. The

reordering process removes any recursion because each of

the four sets (colors) contains disjoint cells. The two sets

of the tridiagonal systems were solved by the Gaussian

elimination algorithm for all systems of each set in parallel.

This was done by changing all variables of the algorithm

into vectors running across the tridiagonal systems. The

inner loops of all of the seven subprograms of the Navier-

Stokes algorithm were fully vectorized. The local memory

was used to store some of the variables, whenever that was

possible. This reduces main memory conflicts and speeds
up the calculation.

Tables VH and VIII contain the execution time for

each subprogram, the Percentage of the total time spent in
that subprogram, and the processing rate for the 64 × 64

and 128 x 128 problems. Most of the time was spent in

relaxd, and the average time step requires about 110 itera-

tions for the 64 x 64 problem and about 270 iterations for

the 128 x 128 problem. The subprogram setbc has a low

processing rate because it has mostly memory access and

scalar operations; however, this subprogram is called only
once during the lifetime of the program. Beside this sub-
program, the processing rate ranges from 57 to 97
MFLOPS with an average rate of about 70 MFLOPS for
the subprograms of both problems.

Table VII. Measured execution time and processing rate of
the Navier-Stokes subprograms for the 64 × 64 problem on
one processor of the Cray/2.

Sub-

program
setbc
zcntr

relaxd

col
zbc

triied

tri/ed

Execution

time (msec)
0.480
0.252
2.719"
0.720
0.015
1.007
0.928

Perc.of

time(%)

0.02
0.08

99.02
0.24
0.01
0.33
0.30

Processing
rate (MFLOPS)

25
63
96
85
66
57
62

overall# 3.048 100.00 96

* per iteration

for ten time steps (execution time is in seconds here).

Table VIII. Measured execution time and processing rate
of the Navier-Stokcs subprograms for the 128 x 128 prob-
lem on one _rocessorof th, Cray/2.

Sub-

program
setbc
zcntr

relaxd

col
zbc

triied

tr#ed
overall#

Execution

time(msec)

1.651
1.059

11.001"
3.036
0.034
4.014
3.870

Perc.of

time (%)
Processing

rate (MFLOPS)

0.01
0.03

99.60
0.10
0.00
0.13
0.13

29
61
97
84
59
59
62

30.286 100.00 97

* per iteration

for ten time steps (execution time is in seconds here).

Based on the fact that Cray vector operations are
"stripmined" in sections of 64 elements, the time required
to perform arithmetic and memory access operations on
vectors of length Lye, can be modeled as follows:

rja = (L:+ t._,) Nq Ce, (5.1)

r,,a - (/128 | L,_+ R2 --?--) N,,a ce, (5.4)

where T/1 and T/,2 are the times to perform floating point
operations with strides of 1 and 2; Tml and Tin2 are the
times to perform main memory access operations with
strides of 1 and 2; CP is the clock period (CP = 4.1 nsec);
L m is the length of main memory to registers path

(Lm = 56 CPs); L/is the length of floating point functional
unit (L/-= 23 CPs); R 1 and R 2 are the data transfer rates
through main memory with strides of 1 and 2 (reasonable
values are R 1 = 1 and R 2 = 3.5, although competition from
other processors causes a lower transfer rates and hence

increased values of R 1 and R2); N/I and Nt2 are the
numbers of floating point operations with strides of 1 and
2; and N,nl and Nm2 are the numbers of main memory
access operations with strides of I and 2.

Table IX contains the operation counts per grid point
for the Navier-Stokes subprograms using the Gaussian
elimination algorithm for solving the tridiagonal systems.
These operations are performed on all grid points of the
domain except for zbc where they axe performed on vec-
tors. Tables X and xrI contain the estimated times of the

Navier-Stokes subprograms for the 64 x 64 and 128 x 128
problems. These times are obtained using equations (5.1)
to (5.4) and Table IX. It is assumed that each division
takes four times the multiplication time. The main
memory access time for each subprogram represents about
50% to 70% of the total estimated and measured time.

This shows that the Cray/2 is a memory bandwidth bound
machine. The memory stride of 2 in relaxd causes more
than a 50% slowdown in data transfer rate. The difference
between the total estimated and measured values can be

attributed to several causes. Among these are: the memory
access and arithmetic operations can overlap, the time to
perform scalar operations is not included, and there is up to
20% offset on the results depending on the memory traffic
and the number of the active processes. Finally, this
model does not take into account the overlapping between

segments of long vectors for the same operation. How-
ever, it was found that this overlapping is insignificant for
Fortran programs.

Table IX. Operation counts per grid point for the Navier-
Stokes subprograms on the Cray/2, using the Gaussian

elimination algorithm for solving the tridiagonal systems.

Sub-

program
setbc

zcntr
relaxd*

co/
zbc#
tdied

trijed

* per iteration

Add

1
3

46
8
5
6
6

Multiply Divide

I 1

1

20

8
7 4

7 2

7 2

vector operations.

Memory
access

8
5
31
16
20
17
17

240

Table X. Estimated
liseconds) of the
64 x 64 problem on

l Sub-prog.
setbc
zcntr

relaxd

cof
zbc

triied

trijed

and measured execution times (in mil-
Navier-Stokes subpro rams for the
one processor of the Cra r/2.

Mem. Add
time time

0.246 0.022
0.154 0.067
1.915 1.206
0.480 0.173
0.010 0.002
0.510 0.130
0.510 0.130

Mult.
time

0.111
0.022
0.551
0.173
0.008
0.324

0.324

Est.
time

0.379
0.243
3.672
0.826
0.020
0.964
0.964

Measured
time

0.480
0.252
2.719
0.720
0.015
1.007
0.928

Table XI.

liseconds)
128 x 128

Sub-

prog.
setbc
zcntr

relaxd

col
zbc

tn'ied

trijed

Estimated and measured execution times (in rail-
of the Navier-Stokes subprograms for the
_roblem on one _rocessor of the Cra,,/2.

Mere.

time

0.996
0.622
6.826
1.967
0.019
2.090
2.090

Add
time

0.090
0.270
4.144
0.711
0.004
0.533
0.533

Mult.
time

0.450
0.090
1.802
0.711
0.016
1.333
1.333

Est.

time

1.536
0.982

12.772
3.389
0.039
3.956
3.956

Measured
time

1.651
1.059

11.001
3.036
0.034
4.014
3.870

VI. Comparisons and Concluding Remarks

There are a number of measures that one can use to

compare the performance of these parallel computers using
a particular algorithm. One is the processing rate and
another is the execution time (see Tables I, VI, VII and
VIII). However it must be borne in mind that both of

these measures depend on the architectures of the comput-
ers, the overhead required to adapt the algorithm to the

architecture, and the technology, that is, the intrinsic pro-
cessing power of each of the computers.

If we consider a single problem, a ten time step run
of the algorithm on a 128 x 128 grid, then the processing
rate is a maximum for the MPP, 155 MFLOPS, compared
to 97 MFLOPS for the Cray/2, and only 1.13 Mb_OPS on

16 processors of the Flex/32. The low processing rate of
the algorithm on the 16 processors of the Flex/32 is simply
due to the fact that the National Semiconductor 32032

microprocessor and 32081 coprocessor are not very power-
ful. Although the algorithm has a higher performance rate
on the MPP than on the Cray/2, it takes less time to solve
the problem on the Cray/2 than on the MPP. This is due

to the algorithm overhead involved in adapting the algo-
rithm to the MPP. As shown in Tables HI and IX, each

iteration of the relaxation process has 145 arithmetic opera-
tions per grid point on the MPP compared to 66 operations
Per grid point on the Cray/2. Also, the cyclic elimination
algorithm, used on the MPP, has 92 arithmetic operations
Per grid point while the Gaussian elimination algorithm,
USed on the Cray/2, has only 10 operations per grid point;
not including computation of the forcing terms.

241

The implementation of the algorithm on the Flex/32
has the same number of arithmetic operations per grid
point as on the Cray/2; there is only a reordering of the
calculations and no additional arithmetic operations in the
overhead. The algorithmic overhead for the Flex/32 ver-
sion is the cost of exchanging the values of the interface
points and setting the synchronization counters for the

relaxation scheme and accessing the common memory for
the ADI method. This means that the code on each pro-
cessor is the serial code plus the overhead code. When the
code is run on one processor, it is just the serial code with
the overhead portion removed.

Another measure of performance is the number of
machine cycles required to solve a problem. This measure
reduces the impact of technology on the performance of

the machine. For the 128"x 128 problem, for example, the
ten time step run requires about 416 billion cycles on the
MPP, 7387 billion cycles on the Cray/2, and 25871 billion
cycles on 16 processors of the Flex/32. This means that
the MPP outperformed the Cray/2, by a factor of 18, and
the latter outperformed the Flex/32, by a factor of 3.5, in
this measure. This also means that one processor of the
Cray/2 outperformed 16 processors of the Flex/32 even if

we assume that both machines have the same clock cycle.
The problem with the Flex/32 is that, although each pro-
cessor has a cycle time of 100 nsec, the memories (local
and common) have access times of about 1 lasec.

One simple comparison between the MPP and Cray/2
is the time to perform a single arithmetic operation using
the models developed in sections HI and V. Using equa-
tion (5.1), the time to perform a single floating point opera-
tion (addition or multiplication) on an array of size

128 x 128 elements on the Cray/2, excluding the memory
access cost, is 91.3 I.tsec. The time to perform the same
operation on the MPP using MPP Pascal, see Table 1/,
ranges from 81.1 _sec (for multiplication) to 96.5 Izsec (for
addition). This shows that the processing power of a sin-
gle functional unit of the Cray/2 is comparable to the pro-
cessing power of the 16384 processors of the MPP. How-
ever, much of the overhead is not included in this com-
parison: memory access cost on the Cray/2, data transfers
on the MPP, and so on.

This experiment showed that by reordering the com-
putations we were able to implement the relaxation scheme

on three different architectures with no major
modifications. Two different algorithms, Gaussian elimina-

tion and cyclic elimination, were used to solve the tridiago-
nal equations on the three architectures; the two algorithms
were chosen to exploit the paralleLism available on these
architectures. The algorithm exploits multiple granularities
of parallelism. The algorithm vectorized quite well on the

Cray/2. A fine grained parallelism, involving sets of single
arithmetic operations executed in parallel, is obtained on
the MPP. Parallelism at higher level, large grained, is

exploited on the Flex/32 by executing several program
units in parallel.

The performance model on the MPP was faixly accu-
rate on predicting the execution times of the algorithm.
The performance model on the Flex/32 showed the impact

of variousoverheadsonthe performance of the algorithm.
The performance model on the C.ray/2 was based on
predicting the execution costs of separate operations. This
model is used to identify the major costs of the algorithm
and reproduced the measured results with an error of at
most 35%.

The ease and difficulty in using a machine is always a
matter of interest. The Cray/2 is relatively easy to use as a
vector machine. Existing codes that were written for serial
machines can always run on vector machines. Vectorizing
the unvectorizcd inner loops will improve the performance
of the code. Unlike parallel machines, vector machines do
not have the problem of "either you get it or not". The
Flex/32 is not hard to use, except for the unavailability of
debugging tools which is a problem for many MIMD
machines (a synchronization problem could cause a pro-
gram to die). On the other hand, the MPP is not a user-
friendly system. The size of the PE memory is almost
always an issue. MPP Pascal does not permit vector
operations on the array nor does it allow extraction of an
element of a parallel array. The MCU has 64 Kbytes of
program memory. This memory can take up to about 1500
lines of MPP Pascal code. This means that larger codes
can not run on the MPP. Finally, input/output is somewhat
clumsy on the MPP. However, other machines with archi-

tectures similar to the MPP may not have the same prob-
lems that the MPP does.

There is one further observation of interest. This

algorithm can be implemented concurrently on four proces-
sors of the Cray/2 (multitasking). The code will be similar
to the Flex/32 version except that most of the variables
should be stored in the main memory. Adapting this algo-
rithm to a local memory multiprocessor with a hypercube
topology should be relatively easy. A high efficiency is
predicted in this case because all data transfers are to

nearest neighbors and their cost should be very small com-
pared to the computation cost.

Acknowledgements

We would liketo thank David Wildenhainof SAR,

Tom Crockettof ICASE, and ChrisWillardof NAS for

theirassistance.This researchwas supportedin partby
NASA ContractNASI-18107 while the authorswere in

residenceat ICASE, NASA Langley Research Center,

Hampton, VA 23665. Also,researchwas supportedinpart

by NASA ContractNAS2-11555 whilethefirstauthorwas

an employee of SterlingSoftwareunder contractto the

Numerical Aerodynamic SimulationSystems Divisionat
NASA Ames ResearchCenter,MoffettField,CA 94035.

[11

[2]

[3]

[41

[5]

[6]

[7]

[8]

[9]

References

Batcher, K. E., "Design of a Massively Parallel Pro-
ccssor," IEEE Trans. Comput., Vol. C-29, 1980,
pp. 836-840.

Fatoohi, R. A., Implementation and Performance
Analysis of Numerical Algorithms on the MPP,
Flex/32 and Cray/2, Ph.D. dissertation, Old Domin-
ion Univ., Norfolk, VA, 1987.

Fatoohi,R. A. and Grosch,C. E.,"Implementationof

a Four Color CellRelaxationScheme on theMPP,
Flex/32and Cray/2,"Proc. 1987 Int.Conf. Par.

Proc.,pp.424-426.

Fatoohi, R. A. and Grosch, C. E., "Implementation of
an ADI Method on Parallel Computers," J. Scientific
Computing, Vol. 2, No. 2, 1987, pp. 175-193.

Flexible Computer Co., Flex/32 Multicomputer Sys-
tem Overview, Publication No. 030-0000-002, 2nd
ed., Dallas, "IX, 1986.

Gatsld, T. B., Grosch, C. E., and Rose, M. E., "A
Numerical Study of the Two-Dimensional Navier-
Stokes Equations in Vorticity-Velocity Variables," J.
Comput. Phys., Vol. 48, No. 1, 1982, pp. 1-22.

Goddard Space Flight Center, MPP Pascal
Programmer's Guide, Greenbelt, MD, 1987.

Grosch, C. E., "Adapting a Navier-Stokes code to the
ICL-DAP," SIAM J. Scientific & Statistical Com-

puting, Vol. 8, No. I, 1987, pp. s96-sl17.

Hockney, R. W. and Jesshope, C. R., Parallel Com-

puters: Architecture, Programming and Algo-
rithms, Adam Hilger, Bristol, England, 1981.

242

